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ABSTRACT

The Center for Intelligent Machines and Robotics (CIMAR) at the University of Florida
has worked in the area of autonomous ground vehicles (AGVs) for several years under the
sponsorship of the Air Force Research Laboratory at Tyndall Air Force Base, Florida. The
objective of the work is to develop technological capabilities that can be applied to a variety of
Air Force needs and application areas. Recently, one of these capabilities required the design of
a modular architecture for autonomous vehicle navigation. This new architecture, which is
currently under development, is called Modular Architecture eXperimental (MAX). One of the
unique features of this architecture is a generic message for controlling the motion of any
autonomous vehicle. This paper describes a control technique, which uses this generic message,
for navigating various autonomous ground vehicles.

* The resulting technique uses two fuzzy model reference learning controllers (FMRLC:s).
One FMRLC controls the vehicle linear velocity, and the other controls the vehicle angular
velocity. Both controllers are designed from parameters that are defined in the MAX interface
document. They have been implemented and tested successfully on three different vehicles, a
Kawasaki Mule with Ackerman steering, a K2A robot with three wheel synchronous drive, and a
tracked vehicle called All-purpose Remote Transport System (ARTS).

1. INTRODUCTION

The Center for Intelligent Machines and Robotics (CIMAR) began working with
autonomous ground vehicles (AGVs) in 1990 and has continued working with them to the
present day. The focus of this work has been on areas required for automated navigation. These
areas include path planning, determining vehicle position and velocity, path execution, and
obstacle detection and avoidance. In 1991, CIMAR completed its first design and
implementation of a vehicle capable of automated navigation. A Kawasaki MULE 500 all-
terrain vehicle was modified for computer control and currently serves as a Navigation Test
Vehicle (NTV) at the University of Florida. A path planner using an A* search algorithm was
implemented to determine the shortest, obstacle-free path to a goal point.! An integrated inertial
navigation unit (INU) and differential global positioning system (DGPS) provides real-time
vehicle position and velocity feedback data.? Path execution was accomplished by mounting
motors and encoders on the vehicle’s steering wheel, throttle, brake and transmission, and by
using PID controllers to attain a desired response. Finally, an array of sonar sensors, mounted on




the front of the vehicle, detects any unexpected obstacle in the vehicle’s path. The NTV has
undergone several revisions, over the years, as current technology and research continues to
advance. Figure 1 shows a picture of the NTV as it is today.

Figure 1: Navigation Test Vehicle (NTV)

In addition to the research in the above areas required for navigation, CIMAR has also
concentrated its efforts in the development of an architecture for AGVs. The main requirement
specified for this architecture was that it must allow systems to be comprised of self-contained
submodules, where only the interface of each submodule is defined rigorously. The effect of this
requirement benefits both the developer and the user. The developer now has a great amount of
freedom in choosing specific hardware and software for his or her system. And, the user now
has the ability to scale his or her AGV’s functionality by combining different submodules.
Developing an architecture that meets this requirement was accomplished with a two-step
process by first determining a list of submodules required to automate a vehicle and then
determining their interface. The Modular Architecture eXperimental (MAX), currently being
developed at the University of Florida, attempts to meet this requirement.’

MAX currently consists of the following submodules: Position System (POS), Vehicle
Control Unit (VCU), Path Planner (PLN), Detection and Mapping System (DMS) and Mobility
Control Unit (MCU). Note that the POS, VCU, PLN, and DMS submodules coincide with the
four areas mentioned earlier that are required for autonomous navigation. The MCU submodule
is used to tie these four submodules together into one system. The modular structure of MAX is
shown in Figure 2. The interface between each submodule defined by MAX allows
communication with other submodules and/or the user.

The main task of the MCU is to control the mobility of the vehicle, which is done here by
executing a planned path. A flow chart of the MCU and the submodules it utilizes is depicted in
Figure 3, where the MCU begins by receiving a planned path from PLN. Once the MCU has this
path, it uses position and velocity feedback data from POS and obstacle data from DMS to
determine the controlled input to the VCU. In the work done here, it is assumed that the
environment is known and static. Therefore, only the position and velocity feedback is used to
determine the controlled input to the VCU.

A unique feature of the VCU is that the input message to control vehicle motion is
generic for all vehicles. It uses two wrench commands, a propulsive wrench and a resistive




wrench, to produce and resist vehicle motion, respectively. Each wrench is comprised of a force
vector, £ = [fs, f;» /2], and moment vector m = [my, m,, m;]. The values for these two wrench
commands are determined by first using a path tracking technique based on screw theory” called
vector pursuit®, which calculates the desired linear and angular velocities of the vehicle in order
to follow the planned path. Then, two adaptive fuzzy controllers are used to track these desired
velocities. The rest of this paper focuses on the development of these controllers. Section 2
gives a brief overview of the fuzzy controllers used. Sections 3 and 4 present the development of
the controllers for the vehicle’s linear and angular velocities, respectively. Section 5 shows the
results of using these controllers on three different vehicles, a steered-wheeled vehicle, a tracked
vehicle, and a 3-wheel synchronous drive vehicle. Finally, some conclusions are presented in
section 6.

Operator .y
Control POS
Unit Vehicle Obstacle
J Position and Data
Velocity Data

" Mobility
Control
Unit

Path
| Wrench

— - Commands
wPath. [ Position Detection Vehicle |,
* " Planner «System . Mapping Control
. . [ System Unit VCU
Figure 2: MAX submodule structure Figure 3: MCU flow chart

2. THEORETICAL BACKGROUND

There are two general techniques for adaptive control, direct and indirect. Direct
adaptive control monitors a system’s response and then modifies the controller in order to
achieve a specified desired performance. On the other hand, indirect adaptive control monitors a
system’s response in order to identify parameters of the system’s model. The controller is
designed as a function of these model parameters to achieve a specified desired performance.
The controller used here is called fuzzy model reference leaming controller (FMRLC)6, which is
a direct adaptive controller. A block diagram of this controller is shown if Figure 4. This section
is intended to give a brief summary of the FMRLC.

The main parts of a FMRLC are the fuzzy controller, the plant, reference model, and the
learning mechanism. A fuzzy controller typically involves three steps: fuzzification, inference,
and defuzzification. The fuzzification step takes the crisp inputs of the process and converts
them to linguistic variables. The inference step uses these linguistic variables to decide the best
course of action based on the knowledge of an expert, which is stored in a rule-base made up of a
set of if-then statements. The defuzzification step takes the linguistic results of the inference step
and converts them to crisp outputs. These crisp outputs of the controller are inputs to the plant,
which is simply the system to be controlled. The reference model gives the desired system
response based on the current input. The main constraint on the reference model is that it must




be reasonable. It is not reasonable to expect a system to achieve a better performance than what
the system is capable. Every system has its limitations, and these limitations must be considered
when choosing the reference model. Finally, the leaming mechanism uses the outputs of the

plant and of the reference model in order to calculate an error between the desired and actual
response. This error is used then to decide how to modify the rule-base of the fuzzy controller in
order to drive the error to zero.
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Figure 4: FMRLC Block Diagram

Once the reference model is determined, a discrete error signal can be calculated by:

e(kT) =y, (kT) - y(kT), ¢y

where e(kT) 1s the current error, y,,(kT) 1s the output of the reference model, y(k7) is the output of
the system, and 7 is the sample time. Depending on the system characteristics, it may also be
useful to calculate the discrete change in error by:

C(kT): e(kT)—;(kT-—T)’ (2)

where c(kT) is the change in error, e(k T) is the current error from equation (1), and e(k7-T) is the
error calculated on the previous time sample. Then, these results and any other system data are
used to determine the necessary changes to the process inputs, p(kT), by the learning mechanism.

The leamning mechanism is made up of a fuzzy inverse model and a rule-base modifier.
The purpose of the fuzzy inverse model is to take the calculations e(k7) and c¢(kT) and determine
how to change the process input, (kT), in order to drive e(kT) to zero. The output of the fuzzy
inverse model is the desired change in process input and is represented by p(k7). First, the inputs
are fuzzified by membership functions specified by the designer. The inference mechanism then




uses rules such as, if the error 1s “positive small” and the change in error is “zero,” then the
change in process input is “negative small.” It is referred to as the fuzzy inverse model because
these rules typically depend on the plant dynamics. Finally, the output, p(kT), is defuzzified by
the center of gravity (COG), center-average or some other defuzzification technique. Then the
output, p(kT), is used to modify the controllers rule-base.

In order to modify the fuzzy controller’s rule-base, which rules are active must first be
determined. In other words, determine which rule’s certainty is greater than zero:

.u'premise(’,.) > 0 * (3)

Then, for all the rules that are active, the center of the m'® output membership function is
adjusted by:

b, (kT)=b (kT -T)+ p(kT), @

where b,,(kT) is the current center of the m™ output membership function, b,,(k7-T) is the center
of the m™ output membership function at the previous time sample, and p(kT) is the desired
change in process input that was calculated by the inverse model.

3. LINEAR VELOCITY FMRLC

The first task in designing a controller is to determine its inputs and outputs. Recall that
under the MAX architecture, the propulsive and resistive wrenches are used to control the
AGV’s motion. Each wrench 1s made up of a force vector, = [f, f;, /2], and a moment vector, m
= [my, my, m;]. The propulsive wrench is used to propel the AGV in the direction of the force or
about the axis of the moment. Since, by the careful selection of the vehicle’s reference frame,
the only term that has an affect on the linear velocity is £+, it is chosen to be the linear velocity’s
controller output. One of the inputs to the controller is obviously the desired linear velocity, vy 4.
A second input to the controller is the vehicle pitch, 6,, since it can have a substantial effect on
the AGV’s linear velocity. A block diagram of the FMRLC for the linear velocity is given in
Figure 5.

From Figure 5, the controller’s input vy 4(kT) is the desired linear velocity, and the
controller’s input 6,(k7) is the vehicle’s pitch. The gains, g, and gg, are used to normalize the
inputs. By doing this, both inputs are fuzzified using the membership functions given in Figure
6. Therefore, the gain g, is chosen to be 1/v,,4y, Where v,y 1s the maximum velocity of the AGV,
and the gain gg is chosen to be 1/6), ;uax, Where ), yax 1s the maximum allowable pitch. Both of
these terms, the maximum velocity and the maximum allowable pitch, are available from the
VCU configuration message under the MAX architecture.

The controller’s output f(kT), in Figure 5, is the first term in the propulsive wrench.
Using the output membership functions shown in Figure 7, the output of the inference
mechanism is normalized also. The gain gris used to scale this output to allow the controller to
command the entire range of the term f;. In the MAX architecture, the term £, has the range from
—100 to 100 percent, and therefore the gain gris chosen to be 100.
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Figure 5: Discrete Linear Velocity FMRLC Block Diagram
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Figure 6: Normalized Input Membership Functions Figure 7: Normalized Output Membership Functions

Now that the inputs and the output of the fuzzy controller are defined, the rule-base for
the inference mechanism must be defined. Typically, if little or nothing is known about the
plant’s characteristics, each rule’s consequent is initialized to the linguistic variable “zero.” This
requires the controller to completely learn the system it is trying to control. By using the MAX
architecture, an important conclusion about the plant’s characteristics can be made. This
conclusion is that increasing the term £, should have the general characteristic of increasing vy,
and decreasing the term £, should have the general characteristic of decreasing v,. With this in
mind, and using the membership function defined in Figures 6 and 7, the rule base for the fuzzy
controller is mitialized with the rules given in Table 1.

It is assumed in Table 1 that the pitch has no affect on the control of the AGV’s linear
velocity. This assumption is made initially because there is not enough information about the
plant’s characteristics to make a conclusion on how the pitch will affect the control of the AGV’s

linear velocity. Therefore, the controller must learn how to control the plant for different vehicle
pitches.




Table 1: Linear Velocity Initial Rule-Base

Force Desired Linear Velocity

N5 N4 N3 N2 N1 Z Pl P2 P3 P4 P5

N5 N3 N4 N3 N2 N1 Z Pl P2 P3 P4 P5

N4 N5 N4 N3 N2 N1 Z Pl P2 P3 P4 P5

N3 N5 N4 N3 N2 N1 Z Pl P2 P3 P4 P5

N2 N5 N4 N3 N2 N1 Z Pl P2 P3 P4 P5

N1 N5 N4 N3 N2 N1 Z Pl P2 P3 P4 P5

Pitch Z N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5
Pl N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5

P2 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5

P3 NS5 N4 N3 N2 N1 Z Pl P2 P3 P4 P5

P4 N5 N4 N3 N2 N1 Z Pl P2 P3 P4 P5

P5 N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P5

The reference model takes the desired linear velocity as input and outputs an estimate of
what the vehicle linear velocity should be. The model implemented here is a simple first order
model. This was chosen for its simplicity where only one model variable needs to be
determined, the time constant. This time constant is set to the system’s average response time to
various f, commands.

The leaming mechanism uses the linear velocity calculated by the reference model and
the current AGV linear velocity to calculate an error, e(k7) and change in error, ce(k7). The
error is scaled by the gain g, and the change in error is scaled by g, in order to use the
membership functions given in Figure 6 for fuzzification. These gains are determined by the
maximum possible errors. Therefore g, 1s set to 1/v gesireq and ge, 18 set t0 T/V gesired, Where Vyesired 18
the desired tracking speed and 7 is the time interval. The rules used by the inference mechanism
are given in Table 2. The conclusions of the rule-base are defuzzified using the COG and the
membership function in Figure 7. And finally, the gain g, is used to control how fast the system
adapts and is left as a tuning parameter.

Table 2: Learning Mechanism Rule-Base

Change in Change in error

process input N5 N4 N3 N2 N1 Z Pl P2 P3 P4 P5
N5 N3 N5 N5 N5 NS N5 N4 N3 N2 NI Z

N4 N5 N5 N5 N5 N3 N4 N3 N2 N1 Z P1

N3 N5 N5 N5 N5 N4 N3 N2 N1 Z P1 P2

N2 N5 N5 N5 N4 N3 N2 N1 Z P1 P2 P3

N1 N5 N5 N4 N3 N2 NI Z Pl P2 P3 P4

Error Z N5 N4 N3 N2 N1 Z P1 P2 P3 P4 PS5

P1 N4 N3 N2 N1 Z P1 P2 P3 P4 P5 PS5

P2 N3 N2 N1 Z Pl P2 P3 P4 PS P5 PS5

P3 N2 N1 Z P1 P2 P3 P4 P5 P5 P5 P5

P4 N1 Z Pl P2 P3 P4 P5 P5 P5 P5 P5

P5 Z P1 P2 P3 P4 PS5 PS5 P5 PS5 P35 P5




4. ANGULAR VELOCITY FMRLC

The angular velocity FMRLC uses the block diagram given in Figure 8, which is very
similar to the linear velocity FMRLC block diagram. Here the controller reference input,
@.,4(kT), is the current desired angular velocity, and the input v(kT) is the vehicle’s current linear
velocity. The linear velocity is chosen as an input since it is expected that more slip will occur
between the vehicle tires and the ground at higher speeds, and therefore affect the vehicle’s
angular velocity. The gains, g, and gy, are used again to normalize the inputs. The gain g, 1s
chosen to be 1/, jax, Where @ mqx 1s the vehicle’s maximum angular velocity. Similarly, the
gain g, is chosen to be 1/v,,,, where v, is the vehicle’s maximum linear velocity. Again, the
information required in order to calculate these gains are given either by the Vehicle Control
Unit (VCU) configuration report or measured by the Position system (POS).
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Figure 8: Angular Velocity FMRLC Block Diagram.

For vehicles with a nonzero minimum turning radius, @ ., turns out to be a function of
the AGV’s current linear velocity and its minimum turning radius:

) — Y current . (5)

z max
min

Note that when the current linear velocity is equal to zero, the gain g, for vehicles with a
nonzero minimum turning radius is infinite. This is because the vehicle is not capable of turning
unless the linear velocity is nonzero. Since it is impossible for the vehicle to turn unless the
linear velocity is nonzero, the gain g, is set to zero if the linear velocity is zero. This is done so
that the controller does not attempt to adapt for this case.




The controller’s output in Figure 8, m,(kT), is the last term of the propulsive wrench.
Using the output membership functions shown in Figure 7, the output of the inference
mechanism is normalized. The gain g,, is used to scale this output to allow the controller to
command the entire range of the term m,. In the MAX architecture, the term m, also has the
range from —100 to 100 percent, and therefore the gain g,, is chosen to be 100.

Just as the MAX architecture provided information for the linear velocity controller, it
also provides some information about the angular velocity in order to initialize the rule-base of
its controller. It is expected that by increasing the term m, in the propulsive wrench, the AGV’s
angular velocity will increase. And, by decreasing the term m; in the propulsive wrench, the
AGV’s angular velocity will decrease. This is, of course, with the exception when the linear
velocity is equal to zero as mentioned earlier. With this information, and using the membership
functions defined in Figures 6 and 7, the rule-base for the angular velocity controller is mitialized

Table 3: Angular Velocity Initial Rule-Base

Moment Desired Angular Velocity

N5 N4 N3 N2 N1 Z P1 P2 P3 P4 P35

N5 N5 N4 N3 N2 N1 P1 P2 P3 P4 P5

N4 N5 N4 N3 N2 N1 P1 P2 P3 P4 P5

N3 N5 N4 N3 N2 N1 P1 P2 P3 P4 PS5

N2 N5 N4 N3 N2 N1 Pl P2 P3 P4 P35

N1 N5 N4 N3 N2 N1 P1 P2 P3 P4 P5

Linear | 7 N5 N4 N3 N2 N1 Pl P2 P3 P4 P5

Vel. P1 N5 N4 N3 N2 N1 Pl P2 P3 P4 P5

P2 N5 N4 N3 N2 N1 P1 P2 P3 P4 P5

P3 N5 N4 N3 N2 N1 Pl P2 P3 P4 P5

P4 N5 N4 N3 N2 N1 Pl P2 P3 P4 P5

NN N NN NNNN]N

P5 N5 N4 N3 N2 N1 P1 P2 P3 P4 P5

with the rules given in Table 3.

It is assumed in Table 3 that the linear velocity has no affect on the control of the AGV’s
angular velocity. This assumption is made initially because there is not enough information
about the plant’s characteristics to make a conclusion on how the linear velocity will affect the
control of the AGV’s angular velocity. Therefore, the controlier must learn how to control the
plant for different linear velocities.

The reference model here takes the desired angular velocity as input and outputs an
estimate of what the current vehicle angular velocity should be. The model implemented, like
the linear velocity controller, is also a simple first order model. Again, this was chosen for its
simplicity where only one model variable needs to be determined, the time constant. This time
constant is set to the system’s average response time to various 71, commands.

The learning mechanism uses the angular velocity calculated by the reference model and
the current AGV angular velocity to calculate an error, e(kT) and change in error, ce(kT). The
error is scaled by the gain g, and the change in error is scaled by g, in order to use the




membership functions given in Figure 6 for fuzzification. These gains are determined again by
the maximum possible errors. Therefore g, is set to 1/@yesireq and gee 18 set to T/Wyesirea, Where
Oyesired 18 the desired angular velocity and T is the time interval. The rules used by the inference
mechanism are given in Table 2. The conclusions of the rule-base are defuzzified using the
COG and the membership function in Figure 7. And finally, the gain g, is used to control how
fast the system adapts and is again left as a tuning parameter.

5. IMPLIMENTATION RESULTS

In addition to implementing the FMRLCs on the NTV for testing, they were implemented

also on a K2A robot developed by Cybermotion, Inc., of Roanoke, Virginia (See Figure 9), and
on an All-Purpose Remote Transport System (ARTS) (See Figure 10), which is a vehicle used by
the United States Air Force Research Laboratory for research and design.

Figure 9: Cybermotion’s K2A Figure 10: All-purpose Remote Transport System

Two different paths are used to test the two FMRLCs. A “U” shape path is used to test
going from a straight section into a curve, and from a curve back into a straight section. And, a
figure eight path is used to test going from a right curve into a left curve, and from a left curve
into a right curve.

First, the FMRLCs were implemented on the NTV. The test paths were executed at
speeds from 2 to 4 mps going forward, and it was also executed going backwards for the same
range of speeds. Figures 11 and 12 show typical results of the NTV tracking a “U” shape path
and a figure eight path, respectively. In both runs, the desired vehicle speed was set to 2 mps and
the average vehicle position error was about 0.03 m and, the average velocity error was
approximately 0.03 mps. Next, the FMRLCs were implemented on the K2A and tested. Typical
results of these tests are shown in Figures 13 and 14. The desired velocity used for each of these
tests was 0.15 mps. The average position error was 0.01 m and the average velocity error was
0.005 mps. Finally, the FMRLCs were implemented on the ARTS and tested using a “U” shape
path and a figure eight path. The ARTS vehicle was already under tele-operated control. Its
VCU was simply modified to accept wrench commands defined by MAX, and within one day it
was navigating autonomously. Figures 15 and 16 show typical results of these tests,
respectively, where the desired velocity was set to 1.4 mps.
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6. CONCLUSIONS

In order to automate the navigation of a vehicle, controllers are required to track a desired
velocity and a desired turning rate. A fuzzy model reference leaming controller (FMRLC) was
implemented to track the desired velocity, assuming that the user would set this tracking speed.
This controller was designed from parameters of known vehicle characteristics such as the
maximum speed and the maximum allowable pitch. A second FMRLC was implemented to
track the desired vehicle turning rate. Again, this controller was designed from parameters of
known vehicle characteristics such as the maximum turning rate and the maximum speed. Both
controllers were implemented on the NTV and successfully tested.

By designing the controllers in term of known vehicle characteristics, transferring them
to different vehicles was greatly simplified. In addition to implementing the FMRLCs on the
NTV, they also were implemented and tested on a Cybermotion K2A and on an All-purpose
Remote Transport System. In each case, the time required to implement the controllers required
less than a day.
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